A new look at the Heston characteristic function
نویسندگان
چکیده
A new expression for the characteristic function of log-spot in Heston model is presented. This expression more clearly exhibits its properties as an analytic characteristic function and allows us to compute the exact domain of the moment generating function. This result is then applied to the volatility smile at extreme strikes and to the control of the moments of spot. We also give a factorization of the moment generating function as product of Bessel type factors, and an approximating sequence to the law of log-spot is deduced.
منابع مشابه
Full and fast calibration of the Heston stochastic volatility model
This paper presents an algorithm for a complete and efficient calibration of the Heston stochastic volatility model. We express the calibration as a nonlinear least-squares problem. We exploit a suitable representation of the Heston characteristic function and modify it to avoid discontinuities caused by branch switchings of complex functions. Using this representation, we obtain the analytical...
متن کاملPortfolio Optimization under Double Heston Duffie-Kan Model and the Price Calculation of the European Option
In this paper, we present a new version of the Double Heston model, where the mixed Duffie-Kan model is used to predict the volatility of the model instead of the CIR process. According to this model, we predict the stock price and calculate the European option price by using the Monte-Carlo method. Finally, by applying the proposed model, we find the optimal portfolio under the Cardinality Con...
متن کاملA New Goodness-of-Fit Test for a Distribution by the Empirical Characteristic Function
Extended Abstract. Suppose n i.i.d. observations, X1, …, Xn, are available from the unknown distribution F(.), goodness-of-fit tests refer to tests such as H0 : F(x) = F0(x) against H1 : F(x) $neq$ F0(x). Some nonparametric tests such as the Kolmogorov--Smirnov test, the Cramer-Von Mises test, the Anderson-Darling test and the Watson test have been suggested by comparing empirical ...
متن کاملFrom characteristic functions to implied volatility expansions
For any strictly positive martingale S = e for which X has an analytically tractable characteristic function, we provide an expansion for the implied volatility. This expansion is explicit in the sense that it involves no integrals, but only polynomials in log(K/S0). We illustrate the versatility of our expansion by computing the approximate implied volatility smile in three well-known martinga...
متن کاملDELFT UNIVERSITY OF TECHNOLOGY REPORT 09-05 On The Heston Model with Stochastic Interest Rates
In this article we discuss the Heston [17] model with stochastic interest rates driven by Hull-White [18] (HW) or Cox-Ingersoll-Ross [8] (CIR) processes. We define a so-called volatility compensator which guarantees that the Heston hybrid model with a non-zero correlation between the equity and interest rate processes is properly defined. Moreover, we propose an approximation for the characteri...
متن کامل